"TLEM1_3" スタートアップガイド

(日本語版)

2018年7月30日

小長井 一男

TLEM1_3 スタートアップガイド

成層地盤と群杭の相互作用解析プログラム

小長井 一男

1. はじめに

成層地盤と円形断面基礎の相互作用については田治見、下村が1976年に薄層要素法なる半 解析的有限要素法を開発している。また小長井は剛体フーチング下の群杭基礎をまとめて 一本の等価な直立梁とする定式化を2003年に提唱した。TLEM1_2(水平、回転加振対応)、 TLEMz(鉛直加振対応)はこれらの定式化に基づいて開発された成層地盤と群杭の相互作 用解析プログラムである。

2. TLEMでできること

地盤と構造物の相互作用は、上部構造と、地盤・基礎からなる下部構造に分割して考える (図.2.1).地盤は剛基盤上に広がる半無限の成層地盤であり、基盤に入力される地震動に 対する成層地盤の応答が $\{u^f\}$ で表現される。しかしながらそこに基礎構造物が存在すると、 異なる剛性を持つ基礎構造物の存在で自由地盤の動き $\{u^f\}$ が $\{u^s\}$ だけ変化する(キネマテ ィック相互作用)。さらに上部構造物があれば、その慣性力によって剛なフーチング上面に は $\{p\}$ なる力が 伝達されることになり、下部構造の動きは、さらに $\{u^r\}$ だけ変化する(慣 性力相互作用)。したがって全体の動き $\{u\}$ は式(2.1)で表現される。

$$\{u\} = \{u^f\} + \{u^s\} + \{u^r\}$$
(2.1)

図 2.1 上部構造と下部構造

TLEMでは成層地盤中の群杭基礎は、まとめて一本の半径Rの円形断面を持つ等価梁に置き 換えられ、x方向に加振される。(図 2.1)。この方向からの方位角を φ とすると、地盤や等価 梁の変形は $\cos \varphi$ あるいは $\sin \varphi$ に比例する形で空間分布する。剛体フーチング上での慣性 力相互作用成分 { u^r } は u^r_x , u^r_q (= $R \cdot \theta^r_y$), u^r_z によって表現される (図2.2)。

上部構造の慣性力によって下部構造に伝達される力{**p**} (= { $p_x \quad p_q(=M_y/R) \quad p_z$ }_{top})に よって剛体フーチングには { u^r }_{top} (= { $u_x^r \quad u_q^r$ (= $R \cdot \theta_y^r$) u_z^r }_{top}) なる変位が発生し、それ は以下の式で表現される。

$$\begin{cases} u_{x}^{r} \\ u_{q}^{r} (= R \cdot \theta_{y}^{r}) \\ u_{z}^{r} \end{cases}_{top} = \begin{bmatrix} H_{xx} & H_{xq} & 0 \\ H_{qx} & H_{qq} & 0 \\ 0 & 0 & H_{zz} \end{bmatrix} \begin{cases} p_{x} \\ p_{q} (= M_{y}/R) \\ p_{z} \end{cases}_{top}$$
(2.2)

$$\mathbb{Z} \subset \mathbb{V} \begin{bmatrix} H_{xx} & H_{xq} & 0 \\ H_{qx} & H_{qq} & 0 \\ 0 & 0 & H_{zz} \end{bmatrix} = [\mathbf{H}] = [\mathbf{S}]^{-1}$$
(2.3)

ここで [*H*] および [*S*] はそれぞれ剛体フーチング上でのフレクシビリティマトリックス、および剛性マトリックスである。

TLEMを実行することで得られる主な出力は以下のとおりである。

- 1) 周波数領域での成層自由地盤の応答 {**u**^f}
- 2) キネマティック相互作用を受ける群杭(等価梁)の応答 $\{u^f\}$ + $\{u^s\}$

3) 地表レベル (剛体フーチング上) での自由地盤変位伝達率 $T_{e,sway}$ および $T_{e,rocking}$ 。 これらは入力損失を表現するもので以下の式で定義される。

$$T_{e,sway} = \left(\frac{u_x^f + u_x^s}{u_x^f}\right)_{top}$$
(2.4*a*)

$$T_{e,rocking} = \left(\frac{u_q^s}{u_x^f}\right)_{top}$$
(2.4b)

$$T_{e,vertical} = \left(\frac{u_z^J + u_z^s}{u_z^f}\right)_{ton}$$
(2.4c)

式 (2.4b) で注意することは $T_{e,rocking}$ の定義式(2.4b)の分母に u_q^f ではなく u_x^f が含まれることである。なぜならば自由地盤の応答には回転成分 u_q^f が含まれていないからである。自由地盤の水平動 u_x^f が群杭基礎 (等価梁)に入力されることで、結果的にフーチングに回転が励起され、フーチング端面(r=R)の位置で上下動 u_q^s が生じるのである。

4) 剛体フーチング部のフレクシビリティマトリックスの各成分 H_{xx} , H_{xq} (= H_{qx}), H_{qq} , H_{zz} および剛性マトリックスの各成分 S_{xx} , S_{xq} , S_{aq} , S_{zz}

等価直立梁について

成層地盤は N_L (≤ 80)の薄層に分割され、そこに N_p 本の群杭が図2.3に示すように打ち込まれ

- ている。等価梁の剛性マトリックスを誘導するにあたっては以下の仮定が設定されている。
- (1) 各薄層内で群杭それぞれは、相互の間隔の初期状態を保ちながら変形する。群杭が包絡 する断面積を A_g としたときに、等価梁の半径Rは $\sqrt{A_g/\pi}$ で与えられる。
- (2) 群杭周辺地盤と群杭間の摩擦によって発生する杭要素へのモーメントは無視される。
- (3) 群杭頭はすべて剛体フーチングに剛結されている。
- (4) 薄層上下端面に現れる杭要素端はすべて同一断面AA'上にある。ただし杭要素端面の 傾きは断面AA'と平行にはならない(図 2.3参照).

この薄層で切断される杭要素端面がなす平面AA'は、いわば"蒸気機関車の動輪を連結する 鉄製の棒(主連棒と呼ばれる)"のようなものである。繋がれる杭要素どうしの間隔を一定 に保ちながら、それらの回転を拘束しない。このような観点から群杭の等価梁は構造力学で 頻繁に用いられるベルヌーイ・オイラー(Euler-Bernoulli)梁でも、またチモシェンコ (Timoshenko)梁でもない。

この等価梁の妥当性を確認するため、群杭頭部の剛体フーチング位置で評価される静的水 平剛性 S_{xx} を群杭の本数や杭間間隔を変化させて算出し、それらの厳密解と比較することに した。ただし S_{xx} をそのまま比較するのでなく、群杭にたいする評価値 $S_{xx,group}$ を単杭単独の 杭頭水平剛性 $S_{xx,single}$ に杭本数 n_p を乗じた値で割った値 η (式(2.5))を縦軸にとり、この値 が杭間隔の変化(杭間隔s/単杭直径D)でどう変化するのを確認した(図2.4):

$$\eta = \frac{S_{xx,group}}{n_p \cdot S_{xx,single}}$$
(2.5)

この比 η は群杭効果を表現するもので、杭間隔が極めて大きければ杭間の相互作用は起こらず1.0に近づくが、杭間隔が短くなれば次第に群杭効果が顕著になり1.0を下回るようになる (図2.4)。この η の値を正方配列された4本杭と9本杭のそれぞれで算出し、それぞれの厳密解と比較すると、s/Dが10~20を下回っていれば等価梁の仮定で良好な近似解が得られることがわかる。一方でTLEM1_2に使用限界はs/D < 10であるともいえる。(Konagai et al, 2003).

3. TLEMを使ってみよう

TLEMのコンポーネントの中でスウェイ、ロッキングを扱うTLEM1_2は1999年に FORTRAN 77を使って開発された。このTLEM1_2では厳密な書式に従って入力データファ イルをテキストエディターで作成することが求められた。しかしながらMicrosoft EXCELの マクロ記述言語としてのVBA (Visual Basic for Applications)の活用が大きく普及したこと から、新たにTLEM1_2、および鉛直加振を解析するTLEMz.exe用のEXCELマクロ "TLEM1_3.xlsm"を準備した。これによってデータ作成の手間や数値計算結果の図示などの 後処理も大幅に効率化されることになった。

注意事項

TLEM をウィンドウズ搭載のコンピューター上で実行するにはMicrosoft EXCEL (Version 14 (EXCEL 2010)以降)があらかじめインストールされていることが必要である。

手順1 以下の5つのファイル (2つの EXCEL マクロ、および3つの実行ファイル)を同じ フォルダーに置く (図**3.1**)。

- (1) TLEM1_2.xlms
- (2) TLEM_Output.xlms
- (3) TLEM1_2.exe
- (4) TLEMz.exe
- (5) PLPRM.exe

PLPRM.exe

図 3.1 TLEM の実行に必要なファイル

手順2 TLEM1_3.xlmsの起動

"TLEM1_3.xlms"のアイコン上でダブルクリックし、XLMSファイルを開くと"To begin with"というスプレッドシートが現れる(図3.2)。

ļ	Save ● Off	<
F	Home Insert Page Layout Formulas Data Review View Developer Help ACROBAT $ ho$ _{Tell me}	B
Pas ⁻	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	~
E29	\cdot : $\times \checkmark f_x$	¥
	A B C D	
1	TLEM (Ver. 1.3)	1
2	by Kazuo KONAGAI	
3	(July 29, 2018)	
4 5 6 7 8	gorous manner. A group of piles clustered together beneath a rigid pile cap is assumed to be a single equivalent oright beam embedded in a stratified horizontal ground with an infinite spread in horizontal radial direction conagai et al., 2003). Put all necessary files in the same directory. These files are: TLEM1_2.xlsm, TLEM_Output.xlsm, PLPRM.exe, TLEM1_2.exe and TLEMz.exe	-
9 10	Click on each of yellow tags "LAYER", "FREQ", "SDISP", "ARRANGE" and "PILEPRM" shown below for editing:	
11	* Number of repetition of frequency domain calculation, initial circular frequency, circular frequency increment in FREQ	
12	* Parameters to create a file for storing spatial distribution of side soil displacement (See details in the manual) in SDISP	
13	* Arrangement of piles grouped together beneath a pile cap in ARRANGE (Piles are shaken in x direction), and	
14 15 16	* Outer and inner radi, Young's modulus and density of each sliced pile element in PILEPRM . Orange tagged spreadsheets are automatically renewed. Don't edit anything on orange Tagged spreadsheets.	
17	Run TLEM	
18	Click on the button to the right to run TLEM. Run TLEM	Ŧ
1	► To begin with LAYER FREQ SDISP ARRANGE PILI ⊕ : ◀	
Read	III III - + 1009	%

図3.2 最初に現れるスプレッドシート"To begin with"

TLEM1_3のウィンドウの下の部分に5つの黄色のタブが現れる。

▶ <u>To begin with</u> LAYER FREQ SDISP ARRANGE PILEPRM LAYER.dat FREQ.dat SDISP.da 左から右に向かって順番に

"LAYER"は薄層にスライスした地盤のLameの定数、密度、各層の下面の地表よりの深さ、

"<mark>FREQ</mark>"は周波数領域計算を行うにあたって、繰返し計算回数、円振動数初期値、円振動数 増分、

"<mark>SDISP</mark>"は周辺地盤内の変形の空間分布を特定の周波数で保存するためのパラメータ "<mark>ARRANGE</mark>"は剛体フーチング下の群杭の配置、そして "<mark>PILEPRM</mark>"は杭の諸元(外径、内径、杭材のヤング率、密度) を入力するスプレッドシートを示している。

そのさらに右にはオレンジ色のタブが並んでいる。これはマクロ作業のためのスプレッド シートで黄色のタグのスプレッドシートを編集すれば自動的に更新される。決してオレン ジ色のタブのスプレッドシートに手を加えてはいけない。

LAYER.dat FREQ.dat SDISP.dat ARRANGE.dat PILEPRM.dat

"LAYER"

このスプレッドシート上では以下を編集する。

- セル B3 に薄層の総数N_pを入力する。すると自動的に一番左の A 列に薄層番号が昇順で 記入される。
- (2) この範囲に各薄層の物性に関する以下のパラメータを入力する。左側から
 B 列、C 列: それぞれラメの定数 λ(kPa)の実部、虚部
 D 列、E 列: それぞれラメの定数 μ(kPa)の実部、虚部
 F 列: 密度 (t/m³)、そして
 G 列: 各薄層下面の地表からの深さ(m)

A			্ 🖬 🔊 -				TLEM1_2 - Saved						- 0	
Fi	e	Home	Insert P	age Layout	ormulas Data	a Review	View Develo	per Help	AC	ROBAT 🔎	Tell me what y	ou want to do	ല്	Share
Past	× ⊾.	Arial B /	″ <u>u</u> - ⊞ - ,	• <u>11</u> • A A δ• • <u>A</u> • [*] Ά	* = = *	- eb Cust	tom •	Conditional Formatting x	orma	at as Cell	Ensert • Delete •	$\sum_{I} \stackrel{\bullet}{} A_{T}$ $\sum_{I} \stackrel{\bullet}{} Sort & Fin$ Filter $\stackrel{\bullet}{} Solution$	d &	
Clipb	oard 5		Font		Alignmen	t G	Number 5	Sty	/les	e Styles	Cells	Editing		^
B5			: X v	fx 470	400									~
	A		В	С	D	E	F	G	Н	1	J	К	L	
1	This da	ata se	t provides pa	rameters that	describe mech	anical features	s of side soil s	lice-wise.						-
2	Lame's constant λ 2 (kPa)		Lame's c (kl	:onstant μ ⊃a)	Density p	Layer bottom			For ve					
3			Real (λ)	lmag (λ)	Real (µ)	Imag (µ)	(t/m°)	depth (m)		S wave velocity	P wave velocity	Poisson's	Hysteretic damping	
4	No. of I	ayers	10	4 7045 10	0.0005.00	0.0005.000	1.5005.00	2.00		(m/s)	(m/s)	0.40	factor	_
6		1	4.704E+05	4.704E+04	9.600E+03	9.600E+02	1.500E+00	2.00		80.00	571.3	0.49	0.0	2
7		- 2	4.704E+05	4.704E+0	9.600E+03	9.600E+02	1.500E+00	4.00		80.00	571.3	0.49	0.0	2
8		4	4 704E+05	4 704E+0	9.600E+03	9.600E+02	1.500E+00	8.00		80.00	571.3	1 0.49	0.0	ś
9		5	4.704E+05	4.704E+04	9.600E+03	9.600E+02	1.500E+00	10.00		80.00	571.3	1 0.49	0.0	5
10		6	4.704E+05	4.704E+04	9.600E+03	9.600E+02	1.500E+00	12.00		80.00	571.3	1 0.49	0.0	5
11		7	4.704E+05	4.704E+04	9.600E+03	9.600E+02	1.500E+00	14.00		80.00	571.3	1 0.49	0.0	5
12		8	4.704E+05	4.704E+04	9.600E+03	9.600E+02	1.500E+00	16.00		80.00	571.3	1 0.49	0.0	5
13		9	4.704E+05	4.704E+04	1 9.600E+03	9.600E+02	1.500E+00	18.00		80.00	571.3	1 0.49	0.0	ŝ
14		10	4.704E+05	4.704E+04	9.600E+03	9.600E+02	1.500E+00	20.00		80.00	571.3	1 0.49	0.0	5
											-			
4	<u>بر</u>	LAY	ER FREQ	SDISP ARRA	NGE PILEPRM	LAYER.dat	FREQ.dat	SDISP.d 🕂	1	4	1	1	-)

図3.3 スプレッドシート"LAYER"

上記を入力すると、自動的に各薄層のS波速度(m/s)、P波速度(m/s)、ポアソン比、履歴減 衰係数が右側の表内に確認のため表示される。

"FREQ"

このスプレッドシートではセルA3からD3までに以下を入力する。

- A3: 周波数領域での繰り返し計算回数、
- B3: 繰り返し計算中、この回数の時に地盤内の変形の空間分布を"space_dsp.dat"なるデ ータファイルに書き込む、
- C3: 円振動数初期値 (rad/s)、そして
- D3: 円振動数の増分 (rad/s)

A		off 🗖 5		TLE	V1_3.xlsm -	Excel		[五 —		
Fi	le Ho	me Insert	Page Layout F	ormulas Da	ta Review	View	Developer	Help /	ACROBAT	₽ _{Tell me}	B
Past		vrial • 1 3 <i>I</i> <u>U</u> • A <i>A</i> → <u></u> → <u>A</u> •	A [*]	ab c+ General Image: C+ Image: C+ Image: C+ Image: C+ <	I ▼ 開Co 6 9 ₩Fo ↓Ce	nditional Fo rmat as Tabl Il Styles +	rmatting - e -	Ensert → Delete → Format →	$\sum_{x} \cdot \frac{A}{Z} \mathbf{\overline{y}} \cdot \mathbf{\overline{y}}$ $\downarrow \cdot \mathbf{p} \cdot \mathbf{\overline{y}}$		
Clipb	oard 🕞	Font	S Alignmen	t 🗔 Numbe	er 🗔	Styles		Cells	Editing		^
G18	3	- I X	$\checkmark f_x$								~
	А	В	С	D	E	F	G	Н	1	J	
1	For the f	requency doma	in solutions of	soil-pile inter	action, the	following	paramete	rs are to be	given.		
2	Repeat count	Large data se is stored at th count of repeating computation	is Initial value of circular frequency (rad/s)	Circular frequency increment (rad/s)							
3	63	6	3 1.000E+00	1.000E+00							_
4 Read	▶	To begin with	LAYER FREC	SDISP 4	ARRANGE	PILI (+				+ 1	► 00%

図3.4 スプレッドシート "FREQ"

"<mark>SDISP</mark>"

周波数領域での繰り返し計算中、特定の円振動数で地盤内の変形の空間分布を "space_dsp.dat"なるデータファイルに次々に追記していく。(スプレッドシート"FREQ"の セルB3 参照). 本スプレッドシート上ではセル A4からE4 まで以下を入力する。

- A4: 変位成分パラメータ *I_{dr}* (*I_{dr}* =1, 2, 3でそれぞれ半径方向、接線方向、鉛直方向の地 盤変位を出力する),
- **B4**: 杭頭加振方向パラメータ K_f (K_f =1,2,3,4 はそれぞれ、水平方向単位荷重 1 kN、モーメント(M_y/R = 1 kNに変換)、水平方向単位変位 1m、回転 ($R \cdot \theta_y^r$ = 1 mに変換)、に対応)
- C4: 変位の空間分布を出力する際の半径方向分割数 (rad/s)、
- D4: 等価梁半径 Rで無次元化した半径方向の距離の初期値 r_{init}/R、
- E4: 無次元化した半径方向の距離の増分 Δr/R。

A	utoSave Off	¶ 5-∂-∓	TLEM1_3	xlsm - Excel		囨			
Fi	le Home In	sert Page Layout Fe	ormulas Data	Review View	Developer H	Help ACR	ROBAT 🔎	D Tell me	B
Past	Arial Arial B I U → ▲	· 11 · 1 · A A A = = = = = = = = = = = = = = = =	ab C ← General ▼ S ← % 9 (.0 .00 .00 →.0	Format as Tab Cell Styles -	ormatting • 👬	Insert - Z Delete - Format -	∑ • ^A ₂ ▼ • ↓ • ,○ •		
Clipt	oard 🕞 Fo	nt 🗔 Alignmen	t 🗔 Number 🗔	Styles		Cells	Editing		^
D7	• I	$\times \checkmark f_x$							•
	А	В	С	D	E	F	G	Н	
1	This data set "SE	DISP.dat" provides ne	cessary paramet	ers for storing s	patial distribut	ion of side	e soil disp	lacement.	
2	Displacement component Idr	Direction of applied force / displacement	number of partitions Kf along radial distance	Initial value of radial distance r _{init} /R	Increment of radial distance Δ r/R	e			
3	ldr=1: radial ldr=2: tangential ldr=3: vertical	Kf=1: Lateral unit forc Kf=2: Moment/R (=1. Kf=3: Lateral unit disp Kf=4: Unit rotation (R	ce 0) c. (*0)	where, R is th radious of g	ne equivalent rouped piles				
4	2		3 50	1	0.1	1			
5									-
	To begin	n with LAYER FREC	SDISP ARRA	INGE PILI (1				•	
Read	y 🛅					─ -		+ 1009	6

図3.5 スプレッドシート"SDISP"

"ARRANGE"

最初にセルB2に群杭の総本数を入力する。すると自動的に一番左のA列に杭番号が昇順で記入される。B列、C列には、A列に記載の杭番号に対応する各杭のx座標値、y座標値を代入する。なお群杭はx方向に加振される。

Д			ا م	- ¢ - ∓		TLEM	1_2 - Savec	I			困			
Fi	ile H	lome	Insert	Page Layout	Formulas	Data	Review	View D	eveloper	Help	ACROB	AT ,O	Tell me	ß
Past V	ie 💉	Arial B I	U - Eont	• 11 • /		ab C ℓ E S A Ment	General ▼ ♀ % 9 €.0 .00 .00 →.0 Number 5	Forma 🖓 Cell St	tional Forma it as Table - yles - Styles	tting 🝷	Ensert Delete	· ∑· e· ↓ · at · ◆ ·	A₂v -	~
E7		-	: ×	$\checkmark f_x$										~
	А		В	С	D	E	F	G	Н		I	J	K	
1	This da	ta set	provides a	rrangemen	t of piles gro	uped toge	ther benea	ath a rigid	pile cap					
2	Numbe pile	er of s	9											
3	Pile Nu	mber	x (m)	y (m)	Note: piles a	are loadec	l in x direct	tion.						
4		1	0.00	0.00		y								
2 6		2	1.50	0.00	- 1	r -		<u> </u>						
7		3	3.00	1.50	- 3 m đ	5 0 7	N							
8		4	1 50	1.50			1							
9		6	3.00	1.50	9) 🖯 🤇								
10		7	0.00	3.00										
11		8	1.50	3.00	- 0		$x \rightarrow x$)						
12		9	3.00	3.00										-
10		FREQ	SDISP	ARRANGE	PILEPRM	LAYER.da	t FREQ.c	lat (+)					_	
Read	y 🛅									Ξ	─	-	+	100%

図3.6 スプレッドシート"ARRANGE"

"PILEPRM"

薄層で分割された群杭の各要素の物性値を入力する。
A列: 薄層番号。自動的に入力されている。
B列、C列: 杭の外径(m) および内径(m)
D列、E列: 杭材のヤング率(kPa)の実部、虚部、そして
F列: 杭材の密度(t/m³)
摩擦杭や中間支持杭を扱う場合、杭先端以下の物性値を地盤の物性値に置き換えることで
近似的にこれらの杭の挙動を近似できる。

図3.7 スプレッドシート"PILEPRM"

以上すべての入力を終了したら、再びタブ "To begin with" (図3.2)に戻り、 Run TLEM のボ タンをクリックすることで TLEM1_2.exeとTLEMz.exeを起動する。

程なくして計算が終了すれば自動的に"TLEM_Output.xlms"が開き、主要な数値計算結果が 6つのスプレッドシートに表示される(詳細は次ページ以降)。

手順2 TLEM_Output.xlmsでの解析結果の確認

TLEM1_2を実行して自動的に開いたTLEM_Output.xlmsには下記の6つのスプレッドシートがある

Pile head stiffness	Pile head flexibility	Effective motion	Vibration modes	Ground vib, SR	Ground vib, Vertical

"Pile head stiffness"

このスプレッドシートでは4つの図が表示される。

- (1) 剛体フーチング部での剛性マトリックス[S] (式 3.1) の対角成分S_{xx}の実部、虚部の円振 動数による変化(左上)
- (2) 同じく剛性マトリックス[S]の非対角項 S_{xq} (右上)。 $S_{xq} = S_{qx}$ である。
- (3) 剛性マトリックス[S]の対角成分S_{qq}の実部、虚部.

式3.1ではモーメント M_y をRで除し、一方で回転角 θ_y にRを乗じているので、マトリックスの すべての成分がkN/mの単位を有する。

(4) 剛性マトリックス[S]の対角成分Szzの実部、虚部.

$$\begin{cases} p_x \\ p_q(=M_y/R) \\ p_z \end{cases} = \begin{bmatrix} S_{xx} & S_{xq} & 0 \\ S_{qx} & S_{qq} & 0 \\ 0 & 0 & S_{zz} \end{bmatrix} \begin{cases} u_x^r \\ u_q^r(=R\theta_y^r) \\ u_z^r \end{cases}$$
(3.1)

図3.8 TLEM_Output.xlmsが自動的にスタートし現れるスプレッドシート"Pile head stiffness"

剛性マトリックスの成分が複素数であることに馴染みのないユーザーのために図3.8に示す ようなモデルを考えてみる。群杭基礎頂部の剛体フーチングに水平動 u_x^r のみを加えてみる。 回転を拘束するためには剛体フーチングに反時計回りのモーメント M_y (式3.2b)を加えな ければならないが、まず、水平方向変位 u_x^r と水平方向に加える力 p_x (式3.2a)について、図 3.8の右に示すようなバネk、ダンパー c、質量mからなる一自由度系の力と変位の関係で 近似できると考える。

$$p_x = S_{xx} u_x^r$$
(3.2a)
$$p_q = M_y / R = S_{qx} u_x^r$$
(3.2b)

図3.9 剛体フーチング部の剛性の簡易表現

この一自由度系に加わる力と変位の関係は以下ようになる。
$$p_x = m \frac{d^2 u_x^r}{dt^2} + c \frac{d u_x^r}{dt} + k u_x^r$$
(3.3)

周波数領域では p_x および u_x^r は以下のように表現できる。

$$p_x = P_x e^{i\omega t} \tag{3.4a}$$

$$u_x^r = U_x^r e^{i\omega t} \tag{3.4b}$$

ここにiは虚数単位、ωは円振動数である。式 (3.4a)、(3.4b)を式(3.3)に代入すれば、

$$\frac{p_x}{u_x^r} = S_{xx} = (k - m\omega^2) + i\omega c$$
(3.5)

式(3.5)から明らかなように S_{xx} には、地盤の共振で所々に下向きのスパイクが現れるものの、 周波数とともに放物線に沿って漸減する実部 $k - m\omega^2$ と、周波数に比例して増加する虚部 $i\omega c$ があり、スプレッドシート左上にある S_{xx} の図の特徴を概略表現している。したがって図 3.8右に示した一自由度系モデルは S_{xx} の近似モデルとして適切であり、もしマスの大きさ が小さければバネkとダンパーcで基礎・地盤系の剛性を概略表現できる。回転に関わる S_{zz} も同じように置き換えれば、併進と回転それぞれをバネとダンパーからなるモデルで表現 することになり、いわゆるSR(Sway-Rocking)モデルになる。非対角項 S_{xq} 、 S_{qx} の影響は無視 されることもあるが、状況によってはその影響を考慮することが大事である。これらの非対 角項の実部が負の値であることに注意する必要がある。

"Pile head flexibility"

このスプレッドシートには左から右、そして上から下の順番で以下の図が表示される。

- (1) フレクシビリティマトリックス[H] (式 3.6) の対角成分 H_{xx}の実部、虚部、
- (2) フレクシビリティマトリックス[H] (式 3.6) の非対角成分 H_{xz} の実部、虚部、 $H_{xq} = H_{qx}$ になることに注意、
- (3) フレクシビリティマトリックス[H] (式 3.6) の対角成分 H_{qq}の実部、虚部、
- (4) フレクシビリティマトリックス[H] (式 3.6) の対角成分 H_{zz}の実部、虚部

$$\begin{cases} u_x^r \\ u_q^r (= R\theta_y^r) \\ u_z^r \end{cases} = \begin{bmatrix} H_{xx} & H_{xq} & 0 \\ H_{qx} & H_{qq} & 0 \\ 0 & 0 & H_{zz} \end{bmatrix} \begin{cases} p_x \\ p_q (= M_y/R) \\ p_z \end{cases}$$
(3.6)

図3.10 スプレッドシート "Pile head flexibility"

"Effective motion"

このスプレッドシート上に現れる2つの図には2~3ページで前出の自由地盤変位伝達率 $T_{e,sway}, T_{e,rocking},$ が左側に、また $T_{e,vertical}$ が右側に表示される。すなわち、

 $T_{e,sway} = \left(\frac{u_x^f + u_x^s}{u_x^f}\right)_{top}$ (2.4aの再掲)

$$T_{e,rocking} = \left(\frac{4}{u_x^f}\right)_{top}$$

$$- \left(u_z^f + u_z^s\right)$$

$$(2.4b \circ \oplus \mathbb{R})$$

$$T_{e,vertical} = \left(\frac{u_z^r + u_z^r}{u_z^f}\right)_{top}$$
(2.4c σ 再掲)

図3.11 スプレッドシート"Effective motion"

T_{e,sway} の実部は1.0から始まり円振動数の増加とともに減少していく。これは周波数が増加 するにつれ、地盤内のせん断波の波長が小さくなり、群杭頭部がこれに次第に応答しなくな ることを示している。一方で *T_{e,rocking}*は低周波数では地盤内のせん断波長が長いので群杭 頭部に回転が発生しないが、周波数の増加(波長の低減)とともに杭頭部のフーチングが次 第に回転するようになる様子を示している。

"Vibration modes"

前ページ"Effective motion"に説明されたように、自由地盤の地震動が群杭基礎に伝達される とその動きが変化する(キネマティック相互作用)。この変化の様子を周波数領域で群杭の 深さ方向に沿って詳細に確認する図が2つ、このスプレッドシート上に現れる。下の図は自 由地盤の動きを示したものであり、図の横向きに円振動数、奥行方向に群杭軸に沿う深さ、 そして縦軸に自由地盤の変位の実部(基盤の入力動が1 に達したときのスナップショット に相当)が表示されている。一方、上の図は同様の方法で表示された群杭基礎の水平(x) 方向応答のスナップショットであり、円振動数の増加とともに次第に群杭が周辺地盤の動 き(下の図)に追随しなくなる様子が示されている。

A	AutoSave	e Off	5	- ¢		TLEM_O	utput.xlsr	n - Exce	l				—		×
F	ile	Home	Insert	Page Layout	Formulas	Data	Revie	w Vie	w De	veloper	Help	ACROB	AT 🔎	Tell me	Ŕ
Past	te	Arial B I	• 1 <u>U</u> • A [*] ^(A) • A • 5		= ab c., ₩	General \$ • % €.0 .00 .00 →.0	· R:	Conditior Format a: Cell Style:	nal Forma s Table - s -	tting 🝷	Ensert Delete	· Σ· e· ↓ · at· √	• A • • •		
Clipt	board 1		Font	Alignm	ent 🕞	Number	19	5	styles		Cells	Ed	liting		^
P36	6	-	: ×	$\checkmark f_x$											٧
	A	В	С	D E	F	G	Н	I.	J	К	L	М	Ν	0	
1		1	2	3 4	5	6	7	8	9	10	11	12	13	14	
2	0	1.032	1.137	1.359 1.823	3.005	6.706	-4.655	-2.314	-1.56	-1.225	-1.058	-0.9788	-0.961	-0.9981	
3	2	1.031		V/:Lunting	(D:L-	-1		-2.259	-1.514	-1.181	-1.012	-0.9285	-0.9033	-0.9288	
4	4	1.03		vibration r	node (Plie	es)		-2.121	-1.398	-1.07	-0.8967	-0.8035	-0.7609	-0.7593	
5	6	1.029						-1.899	-1.212	-0.8933	-0.7163	-0.609	-0.5419	-0.5015	
6	8	1.027						-1.601	-0.9656	-0.6616	-0.4824	-0.3606	-0.2666	-0.1836	-0
7	10	1.024	Ē 10					-1.237	-0.6698	-0.3886	-0.2121	-0.0799	0.03669	0.157	
8	12	1.02	sp.					-0.824	-0.3403	-0.09175	0.07361	0.2075	0.3359	0.479	
9	14	1.016	of di	110	Charles and			-0.378	0.00551	0.2097	0.3526	0.4751	0.599	0.7426	
10	16	1.011	ti o 🚄	THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE	-	16		0.08301	0.3505	0.4974	0.6044	0.6998	0.7994	0.9172	
11	18	1.006	d 15	13 17 21 25 20 22 25				0.5442	0.6822	0.7596	0.8175	0.8703	0.9264	0.9934	
12	20	1	Bes -5	21 25 29 33 37 41	45 49 53 57	51 /	Depth (m)	1	1	1	1	1	1	1	
13				Circular frequency	(rad (r)										
14		1		circular frequency	(rau/s)			8	9	10	11	12	13	14	
15	0	1.032						-2.318	-1.564	-1.23	-1.064	-0.9873	-0.9737	-1.017	
10	2	1.031			0.5 - 5 40			-2.272	-1.524	-1.192	-1.024	-0.9439	-0.9237	-0.957	
1/	4	1.03		-5-0	0-5 15-10			-2.134	-1.408	-1.08	-0.9082	-0.8173	-0.7788	-0.7836	
18	6	1.029						-1.91	-1.221	-0.9013	-0.7247	-0.6186	-0.5537	-0.5173	
19	8	1.027		Vibration mo	de (Free f	ield)		-1.609	-0.9717	-0.6668	-0.48/1	-0.3651	-0.2714	-0.1893	
20	10	1.024						-1.243	-0.6734	-0.3907	-0.2129	-0.07908	0.03937	0.1619	
21	12	1.02						-0.827	-0.3408	-0.09009	0.07766	0.2146	0.3469	0.495	
22	14	1.016	Ê 10					-0.377	0.00955	0.2167	0.3631	0.4901	0.6197	0.7705	
23	16	1.011	5b.					0.08881	0.36	0.5107	0.6222	0.7232	0.8297	0.9559	
25	18	1.000	ip 5	111	Comment of	1000 and the		0.0018	0.093	0.7739	0.8357	0.8934	0.9551	1.029	
26	20		ů ří 🖉			16		-	1		1	1	1		
27			<u>d</u> 15	13 17 21 25	W VIII										
28			Be -5	21 25 29 33 37 41	45 49 53 57	51	Depth (m)								
29				Circular ((
30				circular trequency	(rad/s)										
31															
32															
33				-5-0	0-5 ≡ 5-10										
34															
35															-
4	•	Effor	ctive motic	vibration	moder	Grou	d vib S		: 4						
	,		cuve motic	vibration	modes	Grou	10 10, 51								
Read	ły 🛅													-+	70%

図3.12 スプレッドシート"Vibration modes"

"Ground Vib, SR"

群杭頭部の剛体フーチングを水平、あるいは回転方向に加振したときの周辺地盤内の半径 方向変位あるいは円周方向変位(慣性力相互作用)を3次元表示する。周波数領域の繰り返 し計算中、特定のカウント数(TLEM1_3.xlmsのスプレッドシート"FREQ"のセル"B3"に入 力した数値)でのスナップショットに相当する実部、虚部それぞれの図が上下に並んで現れ る。横軸は群杭基礎中心部からの距離rを等価梁の半径Rで無次元化した無次元化距離r/R、 奥行方向に地盤の深さ(m)、そして縦軸に地盤変位の実部(上の図)、虚部(下の図)が表 示されている。表示する変位の成分(半径方向か円周方向か)は、既出のTLEM1_3.xlmsの スプレッドシート"SDISP"のセル"A4"にパラメータを設定することで行う。杭頭フーチン グ部には、水平、回転の単位の力($p_x = 1$ あるいは $p_q = 1$)ばかりでなく、単位の変位($u_x^r = 1$ あるいは $u_q^r = 1$)を加えることもできるが、それらの指定も"SDISP"のセル"B4"にパラメ ータを設定することで行う(詳細は 8~9ページ参照)。杭頭フーチングに何をどの方向に 加えたかは、図 3.13に示すようにスプレッドシート上部のテキストボックス内に表示され るので確認できる。

図 3.13 スプレッドシート"Ground Vib, SR"

"Ground Vib, Vertical"

群杭頭部の剛体フーチングを鉛直方向に単位力 ($p_z = 1$) で加振したときの周辺地盤内の鉛 直方向変位 (左側) と半径方向変位 (右側) を 3 次元表示する。上下加振なので変位はいず れも軸対称である。周波数領域の繰り返し計算中、特定のカウント数 (TLEM1_3.xlmsのス プレッドシート "FREQ"のセル"B3"に入力した数値) でのスナップショットに相当する実部、 虚部それぞれの図が上下に並んで現れる。横軸は群杭基礎中心部からの距離rを等価梁の半 径Rで無次元化した無次元化距離r/R、奥行方向に地盤の深さ(m)、そして縦軸に地盤変位の 実部 (上の図)、虚部 (下の図) が表示されている。

図 3.14 スプレッドシート"Ground Vib, Vertical"

その他

TLEM1_2.exeおよびTLEMz.exeを走らせると同じフォルダーに31個の出力データファイル が作成されていることがわかる(図3.15)。

図3.15 TLEMを走らせることで生成されるデータファイル類(水色の背景色)

一方でEXCELマクロ、TLEM_Output.xlms にはすでに説明された6つのスプレッドシートし か用意されていない。これらは上記の出力データファイルのうち✔で示した9ファイルのデ ータを表示している。その他のファイルは一般に使用頻度が低く、このマクロでは割愛して いるが、必要とされる場合には旧バージョンのTLEM1_2の使用マニュアル(Konagai K., 2000)などを参照のこと。

参考文献

Konagai K., Yin Y. and Murono Y.: Single beam analogy for describing soil-pile group interaction, Soil Dynamics and earthquake Engineering, 23(3), 213-221, 2003, <u>https://doi.org/10.1016/S0267-7261(02)00212-9</u>.

Konagai K.: Shaking table test allowing interpretation of damage to structure in terms of energy influx and efflux through soil-structure interface, Report of research project, 1999 Grant-in-Aid for Scientific Research (B), No. 10450174, 2000.

Tajimi H. and Shimomura Y.: Dynamic analysis of soil-structure interaction by Thin Layered Element Method, Transaction of the Architectural Institute of Japan, 243, 41-51, 1976.