Getting started guide for "TLEM1_3"

by

Kazuo KONAGAI

July 30, 2018

Getting started guide for TLEM1_3

Thin-Layered-Element Method for Dynamic Soil - Pile Group Interaction Analysis

Kazuo KONAGAI

1. INTRODUCTION

Thin Layer Element Method was originally developed by Tajimi and Shimomura in 1976 to describe layered soil - embedded foundation interaction in a rigorous manner. Konagai (2003) then formulated a stiffness matrix for an upright beam, which is practically equivalent to a group of piles beneath a rigid pile cap. Given these formulations, "TLEM1_2" was developed in 1999 to analyze dynamic layered soil - pile group interaction effects in the frequency domain.

2. WHAT CAN WE DO WITH "TLEM"?

A soil-structure system is divided into two substructures, the super-structure and the unbounded soil extending to an infinity; the latter includes an embedded foundation as illustrated in **Fig. 2.1**. In the lower substructure of soil, an earthquake will cause soil displacements $\{u^f\}$. The foundation embedded in this soil deposit, however, do not follow the free-field deformation pattern. This deviation of the displacements from the free-field soil displacements $\{u^f\}$ is denoted by $\{u^s\}$. The mass of the super-structure then causes it to respond dynamically, and the forces $\{p\}$ transmitted to the lower substructure of soil and foundation will produce further deformation of soil $\{u^r\}$ (*inertia interaction*) that cannot occur in a fixed base structure. Thus, the displacements of soil $\{u\}$ are eventually expressed by the following equation as:

$$\{u\} = \{u^f\} + \{u^s\} + \{u^r\}$$
(2.1)

Fig. 2.1 Super and sub-structures to analyze

In **TLEM**, a pile group is approximated by a single equivalent beam with a circular crosssection of radius R embedded upright in a stratified soil, and this foundation is shaken in x direction, which direction is set as the polar axis (**Fig. 2.1**). This assumption calls for the displacement components of both the foundation (upright single beam) and its side soil to be proportional to either $\cos \varphi$ or $\sin \varphi$ with φ as the angular coordinate. Components of inertia interaction displacements { u^r } at the top rigid pile cap are denoted by u_x^r , u_q^r (= $R \cdot \theta_y^r$) and u_z^r respectively (**Fig. 2.2**).

The interaction forces $\{p\}$ $(=\{p_x \ p_q(=M_y/R) \ p_z\}_{top}^T)$ from the super-structure causes the inertia interaction motions $\{u^r\}_{top}$ $(=\{u_x^r \ u_q^r(=R \cdot \theta_y^r) \ u_z^r\}_{top}^T)$ in the frequency domain as:

$$\begin{cases} u_q^r \\ u_q^r (= R \cdot \theta_y^r) \\ u_z^r \end{cases}_{top}^{r} = \begin{bmatrix} H_{xx} & H_{xq} & 0 \\ H_{qx} & H_{qq} & 0 \\ 0 & 0 & H_{zz} \end{bmatrix} \begin{cases} p_x \\ p_q (= M_y/R) \\ p_z \end{cases}_{top}$$
(2.2)

with
$$\begin{bmatrix} H_{xx} & H_{xq} & 0\\ H_{qx} & H_{qq} & 0\\ 0 & 0 & H_{zz} \end{bmatrix} = [\boldsymbol{H}] = [\boldsymbol{S}]^{-1}$$
(2.3)

where [H] and [S] are the flexibility and the stiffness matrices at the rigid pile cap.

This program provides the following data sets in the frequency domain:

- 1) <u>Free-field ground motion</u> $\{u^f\}$ of a horizontally layered soil subjected to a constant-amplitude sinusoidal shake given to its bedrock
- 2) Motions of the pile group $\{u^f\} + \{u^s\}$ caused by the incoming free-field ground

motion $\{\boldsymbol{u}^f\}$.

3) <u>**Kinematic displacement effect**</u> $T_{e,sway}$, $T_{e,rocking}$ and $T_{e,vertical}$ transfer rates of free-field ground motion to grouped pile foundation. These rates are evaluated at the ground surface level, namely:

$$T_{e,sway} = \left(\frac{u_x^f + u_x^s}{u_x^f}\right)_{top}$$
(2.4a)

$$T_{e,rocking} = \left(\frac{u_q^s}{u_x^f}\right)_{top}$$
(2.4b)

$$T_{e,vertical} = \left(\frac{u_z^f + u_z^s}{u_z^f}\right)_{top}$$
(2.4c)

Note that definitional equation (2.4b) of $T_{e,rocking}$ has no u_q^f but u_x^f as the denominator, because the incoming ground motion has practically no rotational component u_q^f . The horizontal component of the incoming ground motion u_x^f , only when transferred to the pile foundation, can cause the pile cap to rotate.

4) Flexibility components H_{xx} , H_{xq} (= H_{qx}), H_{qq} , H_{zz} and stiffness components S_{xx} , S_{xq} , S_{qq} , S_{zz} in the flexibility and the stiffness matrices, respectively (See equations (2.2) and (2.3)).

Equivalent single upright beam

The soil and N_p piles are divided into N_L horizontal slices as shown in **Fig. 2.3**. The following assumptions are adopted to derive the stiffness matrix for the equivalent single upright beam:

- (1) Pile elements within a horizontal soil slice are deformed all at once keeping their intervals as they are, and the soil caught among the piles moves in a body with the piles. The cross-section A_g of the equivalent single upright beam, thus, comprises both the firmly joined piles and the soil.
- (2) Frictional effects due to bending of piles (moments exerted on each pile from the surrounding soil) are ignored.
- (3) Top ends of the piles are fixed to a rigid cap.
- (4) All upper or lower ends of the sliced pile elements arranged on each cut-end of a soil slice remain on one plane AA' (Note this assumption does not necessarily mean that each pile's cross-section remains in parallel with this plane AA'. See Fig. 2.3 next page).

This plane AA' works like a "**rigid coupling rod for locomotive wheels**" allowing all ends of pile slices spaced at regular intervals to rotate freely. From this viewpoint, the equivalent single upright beam is neither Euler–Bernoulli nor Timoshenko beam.

Fig. 2.3 Equivalent single upright beam

Fig. 2.4 Lateral pile group effects in different pile-to-pile spacing. (Konagai et al, 2003)

To examine the validity of this single-equivalent-upright beam approximation, values of pile cap stiffness in lateral static loading $S_{xx,approx}$ are obtained for different pile groups with different pile-to-pile spacings. Each approximate value of lateral pile cap stiffness $S_{xx,group}$ is then normalized by that for an individual single pile ($S_{xx,single}$) multiplied by the number of piles grouped together beneath a pile cap (n_p):

$$\eta = \frac{S_{xx,group}}{n_p \cdot S_{xx,single}}$$
(2.5)

This ratio η , which converges on 1.0 as the pile-to-pile spacing increases, is a measure for describing pile group effect, which values are compared in Fig. 2.4 with their corresponding rigorous solutions. The single equivalent upright beam analogy is found to provide good approximations for the cases of close spacing. As the pile spacing becomes

larger, however, the approximation deviates from the rigorous one because piles in the group behave as individual piles rather than behave as what has been assumed in the equivalent beam analogy. See more details in (Konagai et al, 2003).

3. LET'S GET "TLEM" STARTED!

TLEM1_2.exe was developed by Kazuo Konagai in 1999 using FORTRAN 77. The original version of TLEM1_2.exe as well as TLEMz.exe for vertical response of piles required a lot of work to prepare necessary input data files using a text editor in strict accordance with fixed formats. Since Microsoft EXCEL has become a standard platform of spreadsheet, an EXCEL Macro, "TLEM1_3.xlsm", was developed in 2018 to automate all the tasks for preparing data files, running TLEM and showing the results.

Requirements:

TLEM1_3 requires Microsoft EXCEL (preferably Version 14 (EXCEL 2010) or above) installed on your Windows machine.

 1^{st} , save the following two EXCEL macros and three executable files on the same folder (Fig. 3.1). These files are:

- (1) TLEM1_3.xlms
- (2) TLEM_Output.xlms
- (3) TLEM1_2.exe
- (4) TLEMz.exe
- (5) PLPRM.exe

PLPRM.exe

Fig. 3.1 Necessary files for TLEM1_2.

2^{nd} , run TLEM1_3.xlms.

Click "TLEM1_3.xlms", and the spreadsheet "To begin with" appears (Fig. 3.2).

A		Off 📮 4		_ ⊡									
Fi	ile Ho	me Insert	Page Layout	Formulas I	Data R	eview Vie	w Develope	r Help	ACROBAT	רא א פע אין א	. B		
Past		ambria • J <u>U</u> • A • <u></u>	$11 \bullet = = = = = = = = =$	$= \begin{array}{c} ab \\ c \\ \hline c \\ \hline \end{array} \hline c \\ \hline e \\ \hline \hline e \\ \hline \hline e \\ \hline \hline e \\ \hline e \\ \hline \hline e \hline \hline e \\ \hline \hline \hline e \\ \hline \hline e \hline \hline e \\ \hline \hline \hline e \hline \hline \hline e \hline \hline \hline \hline$	eral ▼ % 9	Format a: Cell Style:	nal Formatting + s Table + s +	Ensert Delete	$\begin{array}{c} \cdot \\ \cdot \\ \cdot \\ \cdot \\ t \end{array} \begin{array}{c} \\ \bullet \\ \end{array} \begin{array}{c} \\ \bullet \\ \bullet \\ \end{array} \begin{array}{c} \\ \bullet \\ \bullet \\ \bullet \\ \end{array} \begin{array}{c} \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \end{array} \begin{array}{c} \\ \bullet \\ $	7 v) v	~		
Гре			- A f	incite in their		-	lyics	Cells	Laiting				
EZS	J		Jx								*		
	A	В				С				D	<u> </u>		
1				TLE	EM (V	'er. 1.3)						
2				by	Kazuo k	KONAGAI							
3					(July 29,	2018)	.						
4 5 6 7 8	TLEM was developed by Kazuo Konagai in 1999 using FORTRAN 77 for analyzing soil-pile group interaction in a rigorous manner. A group of piles clustered together beneath a rigid pile cap is assumed to be a single equivalent upright beam embedded in a stratified horizontal ground with an infinite spread in horizontal radial direction 4 (Konagai et al., 2003). 5 6 6 1. Put all necessary files in the same directory. These files are: 7 TLEM1_2.xlsm, TLEM_Output.xlsm, PLPRM.exe, TLEM1_2.exe and TLEM2.exe												
9	2. Click o	n each of ye	llow tags "LAY	ER", "FREQ",	"SDISP",	ARRANG	E" and "PILE	PRM" sho	wn below f	for editing:			
10	* Lame * Numb in FRE	s constants, er of repetit Q	ion of frequen	cy domain cal	er bound culation,	initial circ	n soil slice in ular frequenc	LAYER y, circular	frequency	increment			
12	* Paran in SDIS	neters to cre P	ate a file for st	oring spatial d	istributi	on of side s	oil displacem	ent (See d	etails in the	e manual)			
13	* Arran	gement of p	iles grouped to	gether beneat	h a pile o	cap in ARF	ANGE (Piles	are shakeı	n in x direct	tion), and			
14	* Outer Orange	and inner ra	adi, Young s mo adsheets are a	odulus and dei utomatically r	isity of e	Don't edit	pile element i anything on c	n PILEPK	M. Jaed spread	lsheets			
16	orange	agged spre		atomatically I	eneweu.	Don t cuit	anything on c	frange rag	See Spread	isheets.			
17	3. Run TI	.EM											
18	Click or	n the button	to the right to	run TLEM.	Rur	n TLEM							
	•	To begin wit	h <mark>LAYER F</mark>	REQ SDISP	ARRAN	GE PILI	. + : •						
Read	y 🛅							E		+	100%		

Fig. 3.2 Spreadsheet "To begin with"

Five yellow worksheet tabs that appear the bottom of the window are for editing input data of TLEM1_2.

To begin with LAYER FREQ SDISP ARRANGE PILEPRM LAYER.dat FREQ.dat SDISP.da From the 2nd left, they are:

"LAYER" for Lame's constants, density and depth of the lower boundary of each soil slice,

"**FREQ**" for number of repetition of frequency domain calculation, initial circular frequency, circular frequency increment,

"**SDISP**" for parameters to create a file for storing spatial distribution of side soil displacement,

"ARRANGE" for arrangement of piles grouped together beneath a pile cap, and

"**PILEPRM**" for mechanical properties (outer and inner radii, Young's modulus and density) of each sliced pile element.

Contents in orange tabbed spreadsheets will be automatically renewed. **Don't edit** anything on orange tabbed spreadsheets.

LAYER.dat	FREQ.dat	SDISP dat ARRANGE.dat	PILEPRM.dat
	_		

"<mark>LAYER</mark>"

On this spreadsheet,

- (1) Select Cell B4 first and type the number of layers (soil slices). Then the layer numbers are automatically shown in red in an ascending order on the leftmost column A.
- (2) This array of layer numbers shows the required range to input the following parameters for side soil slices. From the 2nd left, these parameters are:

Columns B and C: Real and imaginary parts of Lame's constant λ (kPa), respectively, Columns D and E: Real and imaginary parts of Lame's constant μ (kPa), respectively, Column F: Density of side soil slice (t/m³), and

Column G: Depth of each soil slice bottom (m)

A			্ৰ হন			т	'LEM1_2 - Saved	I.			- 0			
Fi	le	Home	Insert Pa	age Layout 🛛 F	ormulas Data	Review	View Develo	per Help	AC	robat 🔎	Tell me what yo	ou want to do	Ś	Share
Past	× ⊾ *	Arial B /	′⊔- ⊡-	• 11 • A A • A - * * •	= = » = = = •	 → č^b/cust → ^a/c^b/cust → ^a/c^b/cust 	om • ·% ♪ (*.0 .00	Conditional For Formatting ▼	orma Table	nt as Cell	The Insert + Compared to the Insert + Compared	∑ → A Z ▼ J Sort & Fin Filter → Sele	d &	
Clipt	oard 5		Font	5	Alignment	t 5	Number 5	St	yles		Cells	Editing		^
B5	5 · f_x 470400 ·													
	А		В	С	D	E	F	G	н	1	J	К	L	
1	This da	ata se	t provides par	ameters that	describe mech	anical features	s of side soil s	lice-wise.						
2			Lame's c (kł	onstant λ Pa)	Lame's co (kF	onstant μ Pa)	Layer bottom			For verification				
3		(KPa)Real (λ)Imag (λ)R		Real (µ)	Imag (µ)	(t/m³)	depth (m)		S wave velocity	P wave velocity	Poisson's	Hysteretic damping	2	
4	No. of I	ayers	10							(m/s)	(m/s)	14400	factor	_
C C		1	4.704E+05	4.704E+04	9.600E+03	9.600E+02	1.500E+00	2.00		80.0	571.31	0.49	0.0	5
7		2	4.704E+05	4.704E+04	9.600E+03	9.600E+02	1.500E+00	4.00		80.0	5/1.31	0.49	0.0	5
8		3	4.704E+05	4.704E+04	9.600E+03	9.600E+02	1.500E+00	6.00		80.0	5/1.31	0.49	0.0	5
9		4	4.704E+05	4.704E+04	9.600E+03	9.600E+02	1.500E+00	10.00	-	80.0	571.31	0.49	0.0	5
10		6	4.704E+05	4.704E+04	9.600E+03	9.600E+02	1.500E+00	12.00	-	80.0	571.31	0.49	0.0	5
11		7	4 704E+05	4.704E+04	9.600E+03	9.600E+02	1.500E+00	14.00		80.0	571.31	0.49	0.0	5
12		8	4.704E+05	4.704E+04	9.600E+03	9.600E+02	1.500E+00	16.00		80.0	571.31	0.49	0.0	5
13		9	4.704E+05	4.704E+04	9.600E+03	9.600E+02	1.500E+00	18.00		80.0	571.31	0.49	0.0	5
14		10	4.704E+05	4.704E+04	9.600E+03	9.600E+02	1.500E+00	20.00		80.0	571.31	0.49	0.0	5
15		LAY	FR FRFO	DISP ARRAI		LAYER dat	FRFO.dat	SDISP.d (+)	:	4			-	•
Read	y 🛅								-			II -	+	100%

Fig. 3.3 Spreadsheet "LAYER"

Automatically, S-wave and P-wave velocities (m/s), Poisson's ratios and hysteretic damping factors for all soil slices are given in the left table for your information.

"<mark>FREQ</mark>"

On this spreadsheet, fill up cells from A3 to D3 the followings:

- A3: Number of repetition of frequency domain calculation,
- **B3**: At this count of frequency domain calculation, a large data set "space_dsp.dat" of spatial distribution of side soil displacements is created,
- C3: Initial value of circular frequency (rad/s), and
- D3: Circular frequency increment (rad/s)

Fig. 3.4 Spreadsheet "FREQ"

"<mark>SDISP</mark>"

A data file "space_dsp.dat" for spatial distribution of side soil displacements is created at a specified count of repeating frequency domain calculation (see B3 on "FREQ"). On this spread sheet (Fig. 3.5 on the next page), fill up cells from A4 to E4 the followings:

- A4: Index I_{dr} to specify which displacement component will be saved ($I_{dr} = 1, 2$ and 3 for radial, tangential and vertical, respectively),
- B4: Index K_f to specify which unit force / unit displacement will be applied to the pile cap ($K_f = 1, 2, 3$ and 4 for lateral unit force, unit M_y/R , lateral unit displacement and unit $R \cdot \theta_v^r$, respectively),
- C4: Number of partitions along radial distance (rad/s) for 3D plot of soil displacement,
- D4: Initial value of radial distance normalized by R, r_{init}/R , and
- E4: Increment of normalized radial distance $\Delta r/R$

A	AutoSave Off	ີ່ 5-∂-∓	TLEM1_3	xlsm - Excel	ħ			×	
F	ile Home In:	sert Page Layout Form	mulas Data	Review View	Developer H	elp ACRC	obat 🔎	Tell me	B
Past	Arial Arial B I U te ≪	$\begin{array}{c c} \bullet & 11 & \bullet \\ \bullet & A^{*} & A^{*} & \blacksquare & \blacksquare & \blacksquare \\ \bullet & A^{*} & \bullet & \blacksquare & \blacksquare & \blacksquare & \blacksquare \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet$	b General ▼ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Format as Tak Cell Styles -	ormatting • 📰 I ble • 🐩 [nsert ▼ ∑ Delete ▼ ↓ Format ▼ ↓	• <u>A</u> T• • <u>0</u> •		
Clipł	board 🕞 For	nt 🖾 Alignment	S Number S	Styles		Cells	Editing		^
D7	-	$\times \checkmark f_x$							*
	А	В	С	D	E	F	G	Н	
1	soil displa	cement.							
2	Displacement component Idr	Direction of applied force / displacement K	number of partitions f along radial distance	Initial value of radial distance r _{init} /R	Increment of radial distance ∆r/R				
3	ldr=1: radial ldr=2: tangential ldr=3: vertical	Kf=1: Lateral unit force Kf=2: Moment/R (=1.0) Kf=3: Lateral unit disp. Kf=4: Unit rotation (R*6))	where, R is ti radious of g	ne equivalent rouped piles				
4	2		3 50	1	0.1				
5									-
	To begin	n with LAYER FREQ	SDISP ARRA	INGÉ PILI (1					
Read	ly 🛅					□			0%

Fig. 3.5 Spreadsheet "SDISP"

"ARRANGE"

First, type the number of piles grouped beneath a pile cap, and pile numbers will be shown in red on the leftmost column A. Then fill up columns B and C with x and y coordinate values for these piles. Note piles are shaken in x direction.

Д	utoSave 🔍 Off	ت ا	· c> · · ·		TLEN	/11_2 - Save	ed				—		×
Fi	ile Home	Insert	Page Layout	Formulas	Data	Review	View	Developer	Help	ACROB/	AT P	Fell me	Ŕ
Past	te V	<u>U</u> •	• 11 • /		= ^{ab} c≠	General ♀ % 5 €.0 .00 .00 →.0	▼ I Co I Co I Co Co	onditional Forn ormat as Table ell Styles -	natting - -	📅 Insert 🖹 Delete	• Σ • • Ψ • t • ♦ •	A₂ ▼ + , ○ +	
Clipt	board 🕞	Font	t	🗔 Alignr	ment 🗔	Number	Fa	Styles		Cells	Edit	ting	^
E7	-	: ×	√ fx										~
	А	В	С	D	Е	F	(G H		1	J	K	
1	This data set	provides a	rrangemen	t of piles gro	uped tog	ether bene	eath a r	igid pile cap					
2	Number of piles	9											
3	Pile Number	x (m)	y (m)	Note: piles a	are loade	d in x dire	ction.						
4	1	0.00	0.00		v								
5	2	1.50	0.00	⊢(↑	ť								
7	3	3.00	0.00	3 m 🥑	00	9							
8	5	1.50	1.50										
9	6	3.00	1.50	- 4) (5) (<u>6</u>							
10	7	0.00	3.00										
11	8	1.50	3.00		/ Q	3 m)						
12	9	3.00	3.00		-								-
10	► FREC	SDISP	ARRANGE	PILEPRM	LAYER.d	at FREQ	dat	+ : •					
Read	y 🛅									─	-	+	100%

Fig. 3.6 Spreadsheet "ARRANGE"

"PILEPRM"

This spread sheet is for editing the following mechanical properties of piles embedded in each soil slice:

Column A: Layer numbers are shown automatically.

Columns B and C: Outer and inner radii of sliced piles,

Columns D and E: Real and imaginary parts of Young's moduli of sliced piles, and

Column F: Densities of sliced piles

For friction piles, mechanical properties for slices below the pile ends can be replaced with those for soils.

A		Off 📮 🖣	· - ا - د	÷	TL	.EM1_2 - Sa	ved			Ā			
F	ile Hor	ne Insert	Page Layo	out Formu	las Data	Review	View	Developer	Help	ACROB	ат ,О	Tell me	Ŕ
Past	Ar Ar	ial <i>I</i> <u>U</u> - ⊟	• 11			General • ♥ ♥ • .0 .00 .00 → .0	 E Con Forr Cell 	ditional Format nat as Table * Styles *	ting -	Ensert	• ∑• • • ↓ • •t • ◆ •	AZ ▼ ▼	
Clipł	oard 5		Font	rs A	lignment	Number	F _N	Styles		Cells	Ed	iting	^
H6		- : ×	$\checkmark f_x$										¥
	А	В	С	D	Е	F	G	Н		1	J	K	
1	This data	set provide	s mechanic	al propertie	s of pile sig	ce-wise.							
2 3	Layer No.	Outer radius (m)	Inner radius (m)	Young's r (kP Real (E)	nodulus a) Imag (E)	Density (t/m ³)							
4	1	0.3	0.291	2.06E+08	0	7.85							
6	2	0.3	0.291	2.06E+08	0	7.85			_				
7		0.3	0.291	2.00E+08	0	7.65			-				
8	5	0.3	0.291	2.06E+08	0	7.85							
9	6	0.3	0.291	2.06E+08	0	7.85							
10	7	0.3	0.291	2.06E+08	0	7.85							
11	8	0.3	0.291	2.06E+08	0	7.85							
12	S	0.3	0.291	2.06E+08	0	7.85							
13	10	0.3	0.291	2.06E+08	0	7.85							
•	→ F	REQ SDIS	P ARRANG	GE PILEPRI	M LAYER	.dat FREC	<mark>Q.dat</mark> 🤅	+					•
Read	y 🛅								Ξ	─	-	+	100%

Fig. 3.7 Spreadsheet "PILEPRM"

After you finish editing all yellow tabbed spreadsheets, go back to the leftmost startup spreadsheet "To begin with" (Fig. 3.2), and click on Run TLEM to start TLEM1_2.exe and TLEMz.exe.

Calculation will over in a moment, and "TLEM_Output.xlms" will open automatically. Numerical results will be shown on its 6 spreadsheets (see the following pages).

3rd, check out your results on TLEM_Output.xlms.

TLEM_Output.xlms has 6 spreadsheets. They are:

"Pile head stiffness"

Four figures appear on this spreadsheet. From left to right and continuing down, they are;

- (1) Real and imaginary parts of the stiffness for sway motion u_x^r of the pile cap S_{xx} ,
- (2) Real and imaginary parts of the off-diagonal pile cap stiffness S_{xq} (to describe transferring effect from q to x); Note that $S_{xq} = S_{qx}$ and
- (3) Real and imaginary parts of the stiffness, S_{qq} . See in **Fig. 2.2** and in Equation (3.1) the relation between the pile cap rotation θ_y^r and the displacement u_q^r at the outermost edge of the equivalent upright beam.
- (4) Real and imaginary parts of the stiffness for vertical motion u_z^r of the pile cap, S_{zz}

$$\begin{cases} p_x \\ p_q(=M_y/R) \\ p_z \end{cases} = \begin{bmatrix} S_{xx} & S_{xq} & 0 \\ S_{qx} & S_{qq} & 0 \\ 0 & 0 & S_{zz} \end{bmatrix} \begin{cases} u_x^r \\ u_q^r(=R\theta_y^r) \\ u_z^r \end{cases}$$
(3.1)

Fig. 3.8 Spreadsheet "Pile head stiffness" in TLEM_Output.xlms

The idea about complex stiffness with its real and imaginary parts may be unfamiliar to some of you, and the illustration below in Fig. 3.9 will probably help you to understand it.

Fig. 3.9 Super and sub-structures to analyze

When a lateral dynamic load p_x is applied to the pile cap not allowing the cap to rotate, you need to apply a counter-clockwise moment M_y to the cap. These loads are given by:

$$p_x = S_{xx} u_x^r \tag{3.2a}$$

$$M_y/R = S_{qx} u_x^r \tag{3.2b}$$

For simplicity however, only equation (3.2a) is discussed in the frequency domain. The stiffness of the pile cap in its sway motion can be approximated as a parallel assemblage of a spring *k* and a damper *c* with a mass *m* attached on its end (Fig. 3.8). The motion of this simple mechanical model is given by:

$$p_{x} = m \frac{d^{2} u_{x}^{r}}{dt^{2}} + c \frac{d u_{x}^{r}}{dt} + k u_{x}^{r}$$
(3.3)

In the frequency domain, p_x and u_x^r are given by:

$$p_x = P_x e^{i\omega t} \tag{3.4a}$$

$$\iota_x^r = U_x^r e^{\iota \omega t} \tag{3.4b}$$

Substituting equations (3.4a) and (3.4b), one obtains:

$$\frac{p_x}{u_x^r} = S_{xx} = (k - m\omega^2) + i\omega c \tag{3.5}$$

It is now clear that S_{xx} has its real part $k - m\omega^2$, which is a gently decreasing parabola with increasing ω^2 and imaginary part ωc , which increases linearly with increasing ω . Thus, the simple mechanical model in Fig. 3.8 is a good analogy of the frequency domain nature of S_{xx} that can be seen on the upper-left figure on the spreadsheet "pile head stiffness", though there are some downward spikes on the curves, which spikes appear when the side soil is brought into resonance.

Note that real part of S_{qx} begins with a negative value indicating that when the rotation of a pile cap is not allowed, positive sway motion of the pile cap can exert a negative counter-clockwise moment as shown in **Fig. 3.8**.

"Pile head flexibility"

Four figures appear on this spreadsheet. From left to right and continuing down, they are;

- (1) Real and imaginary parts of the flexibility for lateral loading p_x to the pile cap H_{xx} ,
- (2) Real and imaginary parts of the off-diagonal pile cap flexibility (to describe transferring effect from q to x), H_{xq} ; Note that $H_{xq} = H_{qx}$,
- (3) Real and imaginary parts of the flexibility for $p_q (= M_y/R)$, H_{qq} . See equation (3.6) below, and
- (4) Real and imaginary parts of the flexibility for vertical loading p_z , H_{zz} .

$$\begin{cases} u_x^r \\ u_q^r (= R\theta_y^r) \\ u_z^r \end{cases} = \begin{bmatrix} H_{xx} & H_{xq} & 0 \\ H_{qx} & H_{qq} & 0 \\ 0 & 0 & H_{zz} \end{bmatrix} \begin{cases} p_x \\ p_q (= M_y/R) \\ p_z \end{cases}$$
(3.6)

Fig. 3.10 Spreadsheet "Pile head flexibility"

"Effective motion"

Two figures that appear on this spreadsheet show real and imaginary parts of both $T_{e,sway}$, $T_{e,rocking}$ on the left, and $T_{e,vertical}$ on the right, transfer rates of free-field ground motion to grouped pile foundation evaluated at the ground surface level, namely:

 $T_{e,sway} = \left(\frac{u_x^f + u_x^s}{u_x^f}\right)_{top}$ (2.4*a*, as referred on page 3) $T_{e,rocking} = \left(\frac{u_q^s}{u_x^f}\right)_{top}$ (2.4*b*, as referred on page 3)

$$T_{e,vertical} = \left(\frac{u_z^f + u_z^s}{u_z^f}\right)_{top}$$

(2.4*c*, as referred on page 3)

Fig. 3.11 Spreadsheet "Effective motion"

It is noted that the real part of $T_{e,sway}$ decreases gradually from 1.0 to smaller values as the frequency increases indicating that piles start not to follow the incoming free field ground motion as the frequency increases. On the other hand, $T_{e,rocking}$ starts to increase from zero showing that the sole horizontal incoming ground motion can cause rotational motion of the pile cap.

"Vibration modes"

As mentioned above, the seismic incoming motion can be changed along grouped piles, and this kinematic interaction effect can be examined in a more specific manner by comparing two figures that appear on this spreadsheet (Fig. 3.12). The lower figure shows the incoming ground motions along the pile axes in the frequency domain, while the upper figure shows the response of the piles to the incoming ground motion.

,	AutoSave 💽 Off) 🖬 🕤 - 👌 - 🗧						TLEM_O	utput.xlsr	n - Exce		Ā						
F	ile	Home	Insert	Page Layo	out F	ormulas	Data	Revie	w Vie	w De	veloper	Help	ACROB	AT D	Tell me	Ľ	Ż
Pas	te	Arial B I	- - - - - - - - - -	A A A A A A	• •	ab c. T	General \$ - % €.0 .00	• 1000	Conditior Format a: Cell Styles	nal Forma s Table * s *	tting -	🖶 Insert 陀 Delete 📰 Forma	×Σ ×Ψ at × ◆	• AZ • •			
Clip	board 🛛		Font	Es .	Alignmer	nt 🕞	Number	E.	S	Styles		Cells	Ec	liting			^
P3	6	Ŧ	: ×	√ fs	c .												~
	А	В	С	D	E	F	G	н	1	J	к	L	М	N	0		
1		1	2	3	4	5	6	7	8	9	10) 11	12	13	14		
2	0	1.032	1.137	1.359	1.823	3.005	6.706	-4.655	-2.314	-1.56	-1.22	-1.058	-0.9788	-0.961	-0.9981		
3	2	1.031		Vibr	ation m	odo (Dilo	-1		-2.259	-1.514	-1.181	-1.012	-0.9285	-0.9033	-0.9288		
4	4	1.03		VIDI	ation m	oue (Files	>)		-2.121	-1.398	-1.07	-0.8967	-0.8035	-0.7609	-0.7593	-	
5	6	1.029							-1.899	-1.212	-0.8933	-0.7163	-0.609	-0.5419	-0.5015	-	
6	8	1.027	_						-1.601	-0.9656	-0.6616	-0.4824	-0.3606	-0.2666	-0.1836	-0	
1	10	1.024	E 10						-1.237	-0.6698	-0.3886	-0.2121	-0.0799	0.03669	0.157		
8	12	1.02	lisp.		Austine				-0.824	-0.3403	-0.0917	0.07361	0.2075	0.3359	0.479		
9	14	1.016	ofd		1-6	the second second	16		-0.378	0.00551	0.2097	0.3526	0.4751	0.599	0.7426		
10	16	1.011	🦾 o 🚽	THIN THE PARTY OF			-8		0.08301	0.3505	0.4974	0.6044	0.6998	0.7994	0.91/2		
11	18	1.006		13 17 21 25 2	9 33 27 44		0		0.5442	0.6822	0.7596	6 0.8175	0.8703	0.9264	0.9934		
12	20	1	Re		35 37 41 4	5 49 53 57 6	1 / -	Depth (m)	1	1		1	1	1	1		
1.0				Circular f	requency (r	ad/s)			0	0			40	40			
15	0	1 000			. = q = = / (.				0 0 1 0	4 504	10	11	0.0072	13	14		
16	0	1.032							-2.318	-1.504	-1.23	-1.064	-0.9873	-0.9737	-1.017		
17	2	1.031			- 5-0 - 0-	-5 = 5-10			-2.212	-1.524	-1.194	-1.024	-0.9439	-0.9237	-0.957		
18	4	1.03				5 = 5 10			-2.134	-1.400	-1.00	0 7247	-0.0173	-0.7700	-0.7030	-	
19	9	1.025		Vibrati	ion mod	o /Froo fi	ald)		1 609	0 0717	0.6669	0.1241	-0.0100	0.000714	0.1993	-1	
20	10	1.02/		VIDIAL	ion moa	e (Free II	eia)		1 242	0.6724	0.0000	0.2120	0.0001	0.02027	0.1610		
21	12	1.024							-0.827	-0.3408	_0.0000	0.07766	0.2146	0.000007	0.1015		
22	14	1 016							-0.377	0.00955	0.00000	0.3631	0.2140	0.6197	0 7705		
23	16	1.010	E 10						0.08881	0.00000	0.510	0.6222	0.7232	0.8297	0.9559		
24	18	1 006	isp.		- Guerran				0 5518	0 693	0 7739	0.8357	0.8934	0.9551	1 029		
25	20	1	ofd		1	The second second	16		1	1		1	1	1	1		
26			🦾 o 🚮	THIN THE PARTY OF			-8										
27			le -5	13 17 21 25 2	9 33 37 41		7 0	Donth (m)									
28			Re		07 41 4	5 49 53 57 6	ı f	Depuir(iii)									
29				Circular fi	requency (r	ad/s)											
30																	
31																	
32					- 5-0 - 0-	-5 = 5-10											
33																	
34																	
55																	•
•	· · · ·	. Effe	ctive moti	on Vib	ration r	nodes	Grou	nd vib, Sl	(+)								
Read	dy 🛅]		- + 7	70%	

Fig. 3.12 Spreadsheet "Vibration modes"

"Ground Vib, SR"

Real and imaginary parts of either radial or tangential ground displacement caused by a unit sinusoidal pile-cap loading are shown in upper and lower figures on this spread sheet, respectively. Each of these 3D images is a snapshot, with the lateral axis r/R as the radial distance r normalized by R, the depth axis as the depth of the ground and the vertical axis as ether real or imaginary part of ground displacement, at a particular count of repeating frequency-domain calculation, which count is given in advance in Cell "B3" on the spreadsheet "FREQ" of TLEM1_3.xlms. The displacement component is specified in advance by an integer parameter I_{dr} in Cell "A4" on the spreadsheet "SDISP" of TLEM1_3.xlms. The direction of applied load/ displacement is also specified by another integer parameter K_f in Cell "B4" on the same spreadsheet (See more details on page 8 to 9). The direction (type) of loading is automatically shown in the text box near the top of this spreadsheet "Ground Vib, SR" (Fig. 3.13).

ļ			. 5)utput.xlsr	n - Exce	el							
F	ile	Home	Insert	Page Layout	Formulas	Data	a Revie	w Vie	ew De	veloper	Help	ACROE	ват 🔎	Tell me	ß
Pas Clipi	te	Arial B I	• 1 <u>U</u> • A [*] → A • Font	A abc A A A A A A A A A A A A A	ab C+ ↓↓ ≫r +	General \$ ▼ % €.0 .00 .00 →.0 Number	. 9	Condition Format a Cell Style: S	nal Forma s Table - s - Styles	tting •	E Insert Delete Forma Cells	→ Σ at → ◆ Ec	 A₂▼ - P - diting 		~
P3(5	•	: ×	✓ fx											¥
1	А	В	С	D E	F	G	н		J	K	L	M	N	0	
1		1		12 13	14	1.5	16	1.7	1.8	1.9	2	2.1	2.2	2.3	
2	0	-1	Lateral	unit disp. is ap	plied to the	e pile cap) .	-0.01246	0.09689	0.1953	0.282	0.3561	0.4172	0.4649	_
3	2	-0.6728	Sn	atial displaceme	ent distribu	tion (Re:	al)	0.06423	0.1477	0.222	0.2863	0.34	0.3825	0.4137	
4	4	-0.1298	υp	actar alopiaceriti		cion (nei	ary	0.2347	0.2644	0.2874	0.3036	0.3127	0.315	0.3103	
5	6	0.2012	ē					0.2377	0.2252	0.2093	0.1901	0.168	0.1435	0.1168	
0	8	0.2204	<u> </u>					0.06569	0.04007	0.01444	-0.01089	-0.03558	-0.05931	-0.08178	
0	10	0.07348	lsip 1					-0.0855	-0.1006	-0.1137	-0.1248	-0.1336	-0.1402	-0.1445	
0	12	-0.04906	0.5	All and a second se	Contraction of the second	16		0.09599	-0.09482	-0.09198	-0.08755	-0.0816	-0.07424	-0.06558	-0
9	14	-0.07061	gen a			8 10		0.02214	-0.01367	-0.00503	0.003682	0.01237	0.02094	0.02927	_
10	16	-0.03286	8 .05 G	88800		0.7		0.0303	0.03608	0.041	0.04503	0.04813	0.05026	0.0514	_
11	18	-0.00279	5 7 7	1.2 2.2 3.00 3.40 3.40 5.80	40 00 50 50 50 50 50 50 50 50 50 50 50 50		Douth (m)	0.02833	0.02969	0.0303	0.03014	0.02921	0.02751	0.02506	
12	20	0	-i -i		4400	ñ /	Deptil (III)	0	0	0	0	0	0	0	
13			ea	Normalized dista	noo (r/D)										
14		1	e e	NUTHalizeu uista	lice (I/K)			1./	1.8	1.9	2	2.1	2.2	2.3	
15	0	-1.5E-16						0.5959	0.5///	0.5437	0.4964	0.4381	0.3713	0.2981	
17	2	0.2455		- 1 05 - 0	F 0 = 0 0 F -	0.5.1		0.4927	0.463	0.4224	0.3727	0.3156	0.253	0.1866	_
10	4	0.3744		-10.5 -0.	5-0 0.5	0.5-1		0.2454	0.2037	0.1588	0.1119	0.06387	0.01573	-0.03154	-0
10	6	0.1891						0.04929	-0.07891	-0.1065	-0.1318	-0.1544	-0.1739	-0.19	
10	8	-0.06664	Spa	atial displaceme	ent distribu	tion (Ima	ag)	-0.203	-0.2072	-0.2083	-0.2062	-0.201	-0.193	-0.1823	_
20	10	-0.1731						-0.1485	-0.1352	-0.1202	-0.1039	-0.08646	-0.06817	-0.04931	-0
21	12	-0.113	E E					-0.012	0.001869	0.0153	0.02814	0.04024	0.05144	0.06161	_
22	14	-0.00158	isp.					0.05785	0.0612	0.06342	0.06452	0.06452	0.06342	0.06127	- 4
23	16	0.06023						0.04141	0.03553	0.02907	0.0221	0.01473	0.007055	-0.00083	
25	18	0.05105	0.5			E.e.		0.01199	0.005544	-0.00095	-0.00742	-0.01379	-0.01999	-0.02591	_
20	20	0	gue			A 16		0	0	0	U	0	0	0	
27			ofte	9.0.0		T P									
28			tg -0.5 +	1.4 1.8 1.8 1.8 1.8 1.8	889	f 9/	Depth (m)								
20			d B	m m m	4 4 7 9	ð.									
30			lma	Normalized dista	nce (r/R)										
30															
32															
33				-0.5-0	0-0.5 = 0.5-1										
34															
35															
		1.00			1. 60	6	1. 1. 17	0							
•	· · ·	Vibr	ation mode	es Ground	VID, SK	Ground	a vib, Ver	(+)							•
Read	ly 🛅										e e		-	+ 7	70%

Fig. 3.13 Spreadsheet "Ground Vib, SR"

"Ground Vib, Vertical"

Real and imaginary parts of both vertical (left two figures) and radial (right two figures) ground displacements caused by a unit vertical pile-cap loading are shown on this spread sheet "Ground Vib, Vertical". Each of these 3D images is a snapshot, with the lateral axis r/R as the radial distance r normalized by R, the depth axis as the depth of the ground and the vertical axis as ether real or imaginary part of ground displacements, at a particular count of repeating frequency-domain calculation, which count is given in advance in Cell "B3" on the spreadsheet "FREQ" of TLEM1_3.xlms.

Aut	toSave	• Off		ר רא		TLEM_C)utput.xls	m - Exce	I			\square	—		×
File	H	lome	Insert F	age Layo	ut Form	iulas D	ata Rev	view Vi	ew Dev	eloper	Help A	ACROBAT	Forma	at 🔎	Tell me	Ŕ
Paste V	X Èù ≁ ✓	Calibri B I	(Body) ▼ <u>U</u> ▼ A <u></u> Font	14 ▼ A ▼ ^{abc} A ∽	Alignme	ent ⊑	General \$ - % €.0 .00 .00 →.0 Number	, , , , , , , , , , , , , , , , , , ,	Conditio Format a Cell Style	nal Form is Table * s * Styles	atting -	Delete Forma	The second s	AZT → AZT → A		~
Text	Box 5	-	: ×	~	f _x											~
1	A	B 1	C 1.1	D 1.2	E 1.3	F	G 15	H 1.6		J 13	К 1		M 2.1	N 2.2	0	-
1 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 17 18	0 2 4 6 8 10 12 14 16 18 20 0 2 4 4 6	1 5.83E-07 5.2E-07 3.97E-07 3.38E-07 2.79E-07 2.22E-07 1.166E-07 1.1E-07 5.46E-08 0 1 -3.1E-07 -3.1E-07 -3.207 -2.9E-07 2.27E-07	1.1 5.3E-07	1.2 4.84E-07 /ertical di 0006 0002 0 2E-07 8-8 4 8-9 N N 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.3 4.45E-07 isplacement 8.8.8.8 7.2.8.8.8 0002-0 0002-0 0002-0 00002-0	4.1E V nt distrib	15 (ertical u ution (Re 0 1 1 1 1 1 1 1 1 1 1 1 1 1	1 f nit load i eal) Depth (m)	S applied .799-07 .38E-07 .15E-07 .95E-07 .64E-07 .92E-08 .77E-08 0 0 1.77 2.6E-07 2.6	Real part of disp. (m) 000 000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 F-07 isplaceme Normalized di 00006-0.00000 0002-0	2.1 2.29E-07 Int distribut 8 8 5 8 8 9 4 4 5 9 9 stance (r/R) 04 = -0.000000	2.2 2.08E-07 ittion (Rea ⁸ ⁶ ⁴ -0.0000002 ₀₂	2.3 1.88E-07 al) Depth (m)	1
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 24	8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 10 12 14 16 18 20 10 12 14 14 16 18 20 10 12 14 14 16 18 20 10 12 14 14 16 18 20 10 12 14 14 16 18 20 10 12 14 18 20 10 12 14 14 16 18 20 10 12 14 14 18 20 10 10 10 10 10 10 10 10 10 1	2.4E-07 -2.4E-07 -2.1E-07 -1.7E-07 -1.3E-07 -9E-08 -4.5E-08 0 1 1.05E-23 1.17E-23 5.06E-23 -4.8E-24 -3E-23 -1.9E-23 -0.4E-24	-0.000 -0.000 (m) -0.000 (m)	Vertical di 0001 0 0 0 0 0 0 0 0 0 0 0 0 0	splacemer	nt distribu	ution (Im	ag) 5 Depth (m) 2-0.0000001	1.5E-07 1.2E-07 9.7E-08 6.3E-08 2.4E-08 0 1.7 3.1E-07 2.2E-07 1.1E-07 1.1E-07 1.1E-07 1.8E-08 1.85E-08 1.85E-08 1.24E-08	Imag part of disp. (m) 000 00	Radial di	splacemen	At distribu	tion (Ima 8 0 2-0 -0.000004	g) Depth (m)	
35	12 14	-3.1E-25 -5E-23	9.82E-09	1./1E-08 1.97E-08	2.75E-08 2.98E-08	3.86E-08 4.01E-08	4.99E-08 5.02E-08	6.11E-08 6E-08	8 7.19E-08 8 6.93E-08	8.2E-08 7.78E-08	8 9.11E-08 8 8.55E-08	8 9.92E-08 8 9.21E-08	1.06E-07 9.76E-08	1.11E-07 1.02E-07	1.15E-07 1.05E-07	1. 1. ▼
▲ Ready	•	Grou	ind vib, S	SK GI	ound vib	, Vertica age: 0.462	I (356827	+) Count: 61	1 Sum: 28	2.500021	4]		+ 7	► 70%

Fig. 3.13 Spreadsheet "Ground Vib, Vertical"

Others

TLEM1_2.exe and TLEMz.exe create total 31 output data files in the same folder where both TLEM1_2.exe and TLEMz.exe exist.

TLEM_Output.xlms has only 6 spreadsheets for the 9 data files with check marks \checkmark , because the others can be less frequently used in practice. Details of the other files are available in (Konagai K., 2000).

References:

Konagai K., Yin Y. and Murono Y.: Single beam analogy for describing soil-pile group interaction, Soil Dynamics and earthquake Engineering, 23(3), 213-221, 2003, <u>https://doi.org/10.1016/S0267-7261(02)00212-9</u>.

Konagai K.: Shaking table test allowing interpretation of damage to structure in terms of energy influx and efflux through soil-structure interface, Report of research project, 1999 Grant-in-Aid for Scientific Research (B), No. 10450174, 2000.

Tajimi H. and Shimomura Y.: Dynamic analysis of soil-structure interaction by Thin Layered Element Method, Transaction of the Architectural Institute of Japan, 243, 41-51, 1976.